Science Requirement

The Science requirement is fulfilled when a student takes Biology 1, Chemistry 1, and one physicsbased science course from among the following: Conceptual Physics, Physics 1, or Physics 1

Honors.

The many choices available in the sciences are intended to fulfill the diverse needs of EHS's varied student body. The options available to students are governed by student choices, as well as placement by the Science Department. The Department strives to give students options for courses in which they can succeed, based upon their aptitude. For example, Conceptual Physics, rather than the more mathematically intensive Physics 1 course, is offered to those students who think more conceptually and are not planning on an engineering career.

Any course taken beyond the third year of science will count toward the graduation requirements in the "Other Electives" category.

Four-Year
Student
Progression
for the
Science
Department

Students choose only from among the courses for which they have been approved by the Science Department.

[^0]Science Department

Title	Credit	Who May Take	Description	Prerequisites
Biology 1	Full Year	Freshmen	Investigation of traditional first-year topics: comparative phylogenetic study of invertebrates, vertebrates, and plants, with emphasis on biochemistry, cellular structure, and genetics.	None
Biology 1 Honors	Full Year	Freshmen	Expansion of Biology 1, including a stronger emphasis on photosynthesis/respiration and an overview of human anatomy, with enhanced laboratory and analytical assignments.	Dept. Honors Criteria; concurrent enrollment in Geometry Honors
Chemistry 1	Full Year	Sophomores	Investigation of traditional first-year topics from a modeling approach through the use of mathematics, analysis, and laboratory experiences. Topics include properties of matter, atomic structure, quantum mechanics, chemical reactions, stoichiometry, gas laws, solutions.	Biology 1 and Algebra 1
Chemistry 1 Honors	Full Year	Sophomores	Expansion of Chemistry 1, using greater depth of analysis, applying more extensive and complex calculations, and exploring a wider breadth of topics, including oxidation and reduction, kinetics, equilibrium, and bonding. Application and expansion of Algebra 2 Honors concepts.	A in Biology 1 or \mathbf{B} in Biology Honors; A in Geometry or B in Geometry Honors; Dept. Honors Criteria; concurrent enrollment in Algebra 2 Honors
Conceptual Physics	Full Year	Juniors, Seniors	Investigation of traditional first-year topics with an emphasis on concepts, rather than mathematical analysis. Topics include mechanics, electrostatics, electricity, magnetism, heat, waves, sound, and light.	Must have completed Biology 1 and Chemistry 1
Physics 1	Full Year	Juniors, Seniors	Investigation of all traditional first-year topics through the use of mathematics, analysis, and laboratory experiences. Topics include mechanics, heat, electrostatics, electricity, magnetism, waves, sound, and light.	B or better in Chemistry and Algebra 2; teacher recommendation; concurrent enrollment in Precalculus
Physics 1 Honors	Full Year	Juniors, Seniors	Expansion of Physics 1 topics using more intense mathematics, analysis, and laboratory experiences with an emphasis on problem-solving and critical-thinking skills. Topics include mechanics, rotational motion and universal gravitation, heat, electrostatics, electricity, magnetism, waves, sound, light, and optics.	A in Chemistry 1 or B in Chemistry 1 Honors, and \mathbf{A} in Algebra 2 or \mathbf{B} in Algebra 2 Honors; Dept. Honors Criteria; concurrent enrollment in Precalculus Honors
Anatomy and Physiology	Full Year	Juniors, Seniors	Study of the form and functions of the human body, including the muscular, skeletal, nervous, endocrine, circulatory, respiratory, digestive, and reproductive systems, and topics in histology.	Must have completed Biology 1 and Chemistry 1

Science Department (continued)

Title	Credit	Who May Take	Description	Prerequisites

Science Department (continued)

Title	Credit	Who May Take	Description	Prerequisites
Geology	Semester	Juniors, Seniors	Study of minerals, igneous, sedimentary, and metamorphic rocks; geological formations; the changes affecting the earth's crust; and plate tectonics. Lab activities include specimen identification, correlation, contour lines, and general mapping skills.	Must have completed Biology 1 and Chemistry 1
Marine Biology	Semester	Juniors, Seniors	Study of the marine environment, oceanography, marine diversity (survey of marine plants and animals), and marine ecology. Lab exercises will be conducted to emphasize laboratory skills, proper technique, safety, report writing, and analysis.	Must have completed Biology 1 and Chemistry 1
Astronomy	Semester	Juniors, Seniors	Study of stellar and planetary motions, the development of stellar objects, and evolutionary models of the Universe. Students who take astronomy should be aware of the history, the key information, and the current developments in astronomy at such a level that they are able to comprehend current articles in the popular press.	Must have completed Biology 1 and Chemistry 1
Forensic Science	Semester	Juniors, Seniors	An inquiry-rich hands-on course that focuses on the practices and analysis of physical evidence found at a crime scene, Forensic Science is the application of chemistry, physics and biology. This course is a practical way for students to apply the scientific process introduced in previous science courses.	Must have completed Biology 1 and Chemistry 1

Honors Criteria for the Science Department

Common considerations for placement in an honors or AP science course are standardized test scores-including reading comprehension scores-and Department recommendations, based upon performance in previous science and math courses. The EHS placement exams in both math and science are considered when placing freshmen in Biology I Honors.

To succeed in the science honors program, a student should be self-motivated and capable of self-directed study. In addition, he/she should be able to independently integrate and organize concepts previously addressed in mathematics and science into new applications and problems; to work independently or in small groups to solve complex problems through analysis, calculations, and experimentation; and to use inductive reasoning in analyzing data and evaluating the validity of results.

[^0]: * Honors course available; student must meet Dept. Honors Criteria
 **Student must meet Dept. Honors Criteria

